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BAYES ADAPTIVE ESTIMATION OF THE
POINT OF SHIFT TO THE WEAR~OUT
PHASE OF RELIABILITY SYSTEMS

by

S. Zacks

State University of New York at Binghamton

Abstract

A new family of life distributions, called the wear-out distributions,

is developed on the basis of a failure rate function, which is a con-

stant up to the change-point and strictly increasing afterwards.
erties of these wear—out distributions are derived and a Bayes adaptive
procedures is developed for the estimation of the change point.
sive formulae are given for the determination of the posterior probability
that the change has occurred and of its Bayes estimator.
numerical simulations are given to illustrate the properties of the adap-

tive procedure.

Key Words: Wear-out, Reliability System, Bayes Adaptive Procedure,
Stopping Times, Failure Rate Functions, Simulations
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1. Introduction

Consider a system having several components, whose life distribu-
tions depend on the state of the system. Each component is replaced
immediately after failure (corrective maintenance), or at scheduled
replacement epochs (preventive maintenance). The optimal scheduling
of the replacement epochs depends on various economic considerations,
and on the particular life distribution of the component. This in turn
depends on the state of the whole system. We recognize two phases of
the system. Phase I is the phase in which the components have a con-
stant failure rate, A . Phase II is the phase in which the failure
rate is greater than A and increasing. Phase I is a mature stable
phase of the system, while Phase II is a wear-out phase. It is impor-
tant to detect early the transition of the system from Phase I to Phase
I1. Optimal replacement scheduling and inventory management during the
wear-out phase of the system are different from those appropriate to the
constant failure rate phase. The present paper is devoted to the study
of the detection of the shift from Phase I to Phase II, and estimating
the change point, 1t , where this shift occurs.

In Section 2 we derive from a specified failure rate model an
appropriate life distribution for the present study. This life distri-
bution is a composition of an exponential distribution with a Weibull.
It seems to be new in the sense of not being dealt with in the litera-
ture on reliability. We shall call it the wear-out life distribution.

Several properties of this distribution are presented in Section 2. In
Section 3 we develop a Bayes adaptive procedure of estimating the change-
point T , on the basis of a sequence of the replacement times of the
component. Section 4 is devoted to the derivation of some recursive
formulae, which are required by the adaptive procedure. In Section 5

we provide some simulation results, which provide information of the
characteristics of the detection procedure.
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2. The ﬁéaz-Out Life Distribution

The wear-out life distribution i1s based on the following non-
decreasing failure-rate function
A if OStst+

h(t;A,a,7) = (2.1)
A2 %a(e-1T _,_)“'1 , 1f  t<t ,

where A 1s the constant failure-rate in Phase I, O<i<= ; a 1is a shape

parameter, lsa<e» and <t {s the change point parameter Tt 6 =max(0,T) .

If ts0 the system is already in Phase II. The present moZel represents
a superposition of a Weibull failure-rate function (see Mann, Schafer

and Singpurwalla [1 ;ppl27]) on a constant failure-rate function for
t21_ . Notice also that the limiting case of a=1 corresponds to a
shift at t from an expomential life distribution with MTBF ulﬂllk to
an exponential life distribution with an MTBF uz-IIZA s 1.e., for all
t>r , p{X2t|x2t} = exp{-2A(t-t)} . From this faiflure-rate model we
obtain a life distribution, called the wear-out life distribution, with

a c.d.f.

x
F(x;A,a,t) = l-exp{~A f(1+u(l(t-r+)a-l)dt}
0

(2.2)
= l-exp{-Ax-((x-1) )%} , x20
Obviously, F(x;A,a,7) = 0 for =xs0 .
The corresponding p.d.f. is
£(x;2,7,a) = A F (L (x-1,) )%
' (2.3)

vexp{—la(x-1+):} , x20 .

It follows the conditional p.d.f. of X (the life length), given
{X2t} , which 1s the p.d.f. of the residual life distribution in Phase
II, is

g(x-7_;1,0) = Xe-x(x-1+)(1+u(k(x-t+))°-1) .

cexp(-2" (-1 )%, xet (2.4)
Notice that 8=1/) is a scale parameter of this distribution, and that
T, is a location parameter of the truncation type (see Zacks [ 3;pp.4d).
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Figure 1. Density functions of the wear-out distribution
for \=1, @ =2 and 7=0, 1 and @ (exponential).
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In Fig. 1 we present graphs of the wear-out life density (2.3) for
a=2, A=l and various values of T . We remark here that, 1f T
is very large compared to 1/A , the wear-out distribution is practi-
cally an exponential distribution with mean u=1/A . This is the case
when the system is far from its wear-out phase. We conclude the present
section with a presentation of the formula for the moments of the wear-
out distribution (2.3). Since 1/\A is a scale parameter, we will pre-
sent the moment ur(u,r) for the case of A=l ., If Azl then

E{X";2,a,1) = l—fﬂ (a,r1) .

zF O E

The r~th moment in the standard case is for 1t>0 ,

T r-x ® r -x-(x-ria a-1
ur(a,r) = [ Xxe dx+ /[ xe (1+a(x-1) )dx
0 T

= r!(1-Pos(rit))

- r r-j
+e v L (M, () , (2.5)
jm0 3 3
where N K Aj
Pos(k(A) = e " L (2.6)
3=0 1°
is the Poisson c.d.f. and
® o
Ma) =/ Pe T -y Hay , 320 2.7)
) 0
Integration by parts yields, for every j21,
w© a
M@ =3 Sy ey (2.8)
0

which is smaller than T (j+1) = j! for all j21 . Notice that Ho(a)-l
for all a2l « The integral in (2.8) can be evaluated numerically. In
the case of q=2 we obtain, for a1l j21 ,

- 2
My(2) = jebl4 I 1o GH2) (2.9)
0
-1 - o1
= je”" b (-1)*"(j [)(%)5 1-¢/ 213(1’.;v’-1/2) .
v %0
" = i RSN
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where, for all (22

and

The functions B({; %-) can be determined recursively, according to

(2.10) and (2.11).

2

BN

-6 -
o L__]___
BL;E) = fze 2%dz
3
-Ez

B(0;E) = 21 (1~¢(£))

B(1;E) = exp{- %'52} s
where ¢&(2z) is the standard normal c.d.f.

expi- L &% + €-1) BU-2;8)

(2.10)

(2.11)

In Table 2.1 we provide the first four moments, the

standard deviation ¢ , the measures of skewness 18 and kurtosis, Yy »

of the wear-out distribution for A=l , a=2 and several values of

T o

Table 2.1 The first four moments, standard deviation, and measure
of skewness and kurtosis of the wear-out distribution, for A=l , a=2
apd t=0(.5)2 , 3(1)7 .

T 0 o5 1.0 1.5 2.0
¥y 0.54564 0.72442 0.83285 0.89862 0.93851
My 0.45436 0.78694 1.09709 1.35098 1.54486
LB 0.47769 1.03764 1.76118 2.53153 3.25967
L 0.59026 1.55837 3.18161 5.34890 7.86491
g 0.39577 0.51201 0.63518 0.73720 0.814%0
Y1 0.94918 0.65373 0.68460 0.85060 1.04106
Yy 3.80641 2.95378 2.68424 2.87374  3.32183

3 4 5 6 7
¥y 0.97738 0.99168 0.99694 0.99887 0.99959
L) 1.78732 1.90511 1.95897 1.98265 1.99279
Hq 4,42171 5.15969 5.57697 5.79571  5.90446
LA 12.93668 17.10481 20.00519 21.81282 22.85481
g 0.91217 0.96005 0.98239 0.99242 0.99680
| 1 1.38130 1.63008 1.79281 1.89034 1.94467
Yy 4.55947 5.85946 6.96183 7.77159 8.30424

A s

ERCE Ry 2

e S




PR e ﬁ#‘:;"?‘m

g

T TR KA

The exponential distribution is the limiting case when .1+ , The
moments of the expomential distribution with A=1 are ul-l, u2-2,
u3-6 and u4-24 . We see in Table 2.1 that when <=7 the moments

of the wear-out distribution are already close to those of the limiting
exponential distribution.
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3. Bayes Estimation of ;he Change Point

In the present section we develop the Bayesian framework for estim-
ating the change point, t , and deciding whether the transition to Phase
II has taken place.

Given a sequence tl,tz,... of replacement epochs, where
0<tl<t2<... » we consider the random variables Xi -,ti-ti-l(i'l’z"") s
where t, 20. Xi represents the operational time length of i-th
sequentially installed component. Since the preventive maintenance
replaces the component after A units of time, Xi = min(Yi,A) , where
Yl,Yz,... are independent random variables having the wear-out distri-

i " r-ti_l (1=1,2,...) . Ty is the
length of time left for the system, after the i-th installment of the
component till the transition to Phase II. If <t,<0 , the chang to
Phase II has taken place before ti—l .

In the present study we assume that A and a are known. The

bution, with parameters A,a and T

i

only unknown parameter is the change point, t . Without loss of gener-
ality we agssume that A=l . If Azl replace X, in the formulae below
by xxi(i-l,...,n) .

Given n replacement points ¢t
where X, =t -t 1 and define

b3

(n)' t
1$Ep<<t, » let X (XyseeerX)

i1 1
1 , 1f xi < A
o= (3.1)
Q , if xi = A

The likelihood function of 1t , given g(n) » 1s
n
L(t;g(n)) = I{t50} exp{~ I x:

o a=1
}n (1+uJixi )
{=l

i=]
o-1 no
+z I{tj_l<t$t } exp{- I Xk}

n

-1
T (Q+g x4 . ;
=1 1 kei+l Kk

kei+1

ja=~1 o
[lﬂJj(xj-Ptj_l-r) ] GXP{-(Xj-Ptj_l—t) }

o-1 o
+{e _,<rst } (Mol (X +e ,-1) 7] exp{-(X +c _,-7)"}

1
+I{t>:n} . (3.2)

where I{A} is the indicator function of the set A.




Generally, let £(t) denote the prior p.d.f. of 1 . Then, the
posterior p.d.f. of T , given g(“) , 1is

g™y = eonx®Hmex™) (3.3)
where
pEg®™) = g™ s (3.4)
In the present study we consider a prior distribution with p.d.£f.
P , 1if TSTO
g(t) = : (3.5)
@-pyve ¥+ , if g s

where Q<p<l and O<p<= . T is a time point such that, with high
prior probability, 1l-p , the true wear-out point, 7t , exceeds it. We
are interested therefore in time points greater than T - We shall
agsume accordingly, without loss of generality, that 10-0 . For the
prior p.d.f. (3.5) under consideration, the function (3.4) assumes the

form a
D™ = p expl- 7 X0} 1 (107
i=] i=]
..
+ (1-p) ¢ exp{~ } H [14aJ 1 .
=1 k.-j+1xk Kkeg+1 kx;

-Wt o
31, fj Yo (403, (X-u)* 1 o &) gy

‘W X v &
+ @-pve LRV (g x 07 & 0™
0
_‘,tn
+ (1-pe . (3.6) -
The posterior probability, after observing g(n) , that the transition
to Phase IT has already takem place (i.e., {TStn}) is p = l-qn ,

where -yt
q, = -pe  °De,w:x™) . 3.7 t

If Py is large we have high evidence that the change has already taken
place. In addition, after observing g(“) the Bayes estimator of =t ,
for squared error loss function, is the posterior expectation of rt ,
given g(n) . This estimator is determined by the formula

Core
-
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t @ix®) = Eeig® ) =

(eps 1 (14l ] exple £ )
l1-p)y Z I 1+ald exp{- I .
j=1 kef+l W k-j+1xk

-X -u)®

-t
3 ] e 3 du

. a~1
e

e ¥ [l & -w)

3

X

-1 %3
4 o(t
0 b

-pt_ . X _ - PN
+ (1-pIve “lfc%dmnwuum%m{w“ﬁe(%“ku

-pt o '

+@-pive B (e teVaud f pGpux®) L (
Notice that if Axl we getermine P, and ;n(p,w;x(n)) by substi-
tuting in the above formula xxi fos X, and ¢/2» for ¢ .

Thus, we can compute P, and Tn adaptively, after each reglace-
ment, and decide that the change has occurred at the first time rnstn
or p, is sufficiently large. Shiryaev [ 2] studied the problem of
the quickest detection of the occurrence of a change in a specifided
distribution. He showed that, when the distributions before and after
the change are known, the optimal Bayes sequential stopping time is at
the smallest n2l1l for which pnzn* . H* is a threshold that can be
determined to minimize the total expected loss. Our problem is however
different, First, we do not have just two known distributions with a
switch from one to another at an unknown change-point, Tt , but a
sequence of wear-out distributions with unknown parameters Ty and we
wish to detect the time point at which, for the first time, :iso .
Moreover, we do not have a sequential stopping problem, but an adaptive
decision problem. The replacement process is continuing also after the
decision that riso has been reached. The implications of this deci-
sion are on the adaptation of the scheduled replacement period, 4 ,
and on the inventory of gpare components. In the following section we
provide some recursive formulae for the determination of D(p,w;g(n)) s

p, and ;n(p.t;xn) .

e ———— . oo T PN
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4. Recursive Formulae
From (3.3) and (3.5) one immediately obtains that, for every

cztn (n=1,2,...)
(1"P) -yt (4.1)

(n) e
P{tzt|{XV"'} =
~ D(p,w;z(n)

Combining this result with (3.7) we obtain for all tZtn

=y(t-t )
Prtlz ™} = (1p e n , (4.2)

where pn is the ;Eoiterior probability of {‘tStn} . This yields that,
n

after observing X , the posterior distribution of 1t for ‘t.>.tn is

of the same form as (3.1), with p replaced by P, » i.e., the poster-

ior p.d.f. of 1 , given z(n) satisfies
P, » 1f '1:Stn
(0 = “b (-t ) (4.3)
(l-pn)tbe , if ™t .

D(p,w;;{,(n)) , n21 , can be com

According to (3.6), the function Dn
puted by the following recursive formula

D =D_ . (L+ad 1) expl-5®} + (1-p) Va1
n n-1 an xP n p/e
X
n -Yu a-1 o
[y o e (1+an(Xn-u) ) exp{-(Xn-u) }du
_ -yt
- QHad 327 exp(-x2}] + (1-ple  ° , (4.6)
where DO =1.
Notice that for all A , O<A<» |,
D@ ¥;E™) = po,u/a 525 ™) : 4.5)
Employing (3.7) and (4.4) we obtain
~yt -yt __ _
lop = (1=p)e " (1-p)e ®1 D5 ¥X
Pn D D D e
n n-1 n
-yX

n

e
= (l-pn_l) W . a1 . (4.6)

N e e YT TR
RS N TSNS N
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Moreover,
Dn k-1 o
= p,_ (IHad X ) exp{-X } +
n-1
xn
"~ =ju _yo-1 (X =) O
(1—pn_1)¢ g e (1+an(Xn u) ) exp{ (Xn u) }du
-wxn
+ (l—pn_l)e 4.7
" Thus, define for all 0£x<A the function
¥ (p,¥,x) = pe VR (L™ + !
x . -1 a
A-p)y [ e M+l x-u)®t) exp(- (x-u)}du
0
+ (1-p) exp{-yx} . 4.8)
where J = I{x<A} . It follows from (4.7) and (4.8) that, for every
‘ n21 i
i -1
I D(P:W;}S(n)) - D(P’w;g(n )) \l’a(Pn_l’w’xn) ’ (4.9)
i and
| - ¥
py=1- “ :“'(1) ex;{x ’){“} (4.10)
a‘Pp-12¥2%
The integral in (4.8) can be evaluated numerically, or according to the
formula
X a
A-p)y [ e V¥4l (x-u)® hye W) gy -
0
-wx © oI
(-p) L e¥*r ¥ re*; ALy v wre®; L+ 1), G
a 1=0 j! a o
X wl-z
where T(x;v) = [ z° “e "dz 1is the incomplete gamma function (v>0) .
0

In the case of a=2 we obtain the explicit formula

- ]

<7_:\.
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2
¥ (p,w,x) = pe-x (1+2Jx) +

A £ (0 - )y + o - s

2
+3-pove VT4 (=) - o( — - V3x)]
2 vz

+(l~p)e.wx N (4.12)

where ¢(z) and ¢(z) are, respectively, the p.d.f. and the c.d.f. of
the standard normal distributionm.
We discuss now the recursive determination of the Bayes estimator

of T . According to (3.8)

k™) =B+ Qe (v ) 4.13)
where
{(l—p)w L H [1+aJ x“ ] exp{- Z Xk} .
3=l ke=j+l k=j+1
j
j -1 f (ilu - a=-1 - IR )
(tj Fwe [1+qu(xj u)” 7] exp{ (Xj u) ldu
-¢tn-1 Xn ~ju a=-1 a
+ (1-p)ye i) (tn_1+u)e [1+an(Xn-u) ] exp{-(xn-u) }du} +D
0
n22 (4.14)
Define the function
x a
g (Ba¥st,0) = U-p)e ™™y f (t-y) (ely® HeW T ay . 4.19)
0
Then,
El - na(P,W,tl.Xl)/Dl » (4.16)
and, for every n2l R
En+1 = [Enpn(1+°Jn+l n+1) exp{-X }
+ Tlc(P""stn,.,lox‘H_l)] 4 Dn+1 . (A017)
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The function nz(p,w,t,x) can also be written in terms of the
p-d.f. and c.d.f. of the gtandard normal distribution as

2
n,(p,¥,t,x) = (1-p)pe vtV /4 &

2
{M(/E(x-—ZL)) +o(Y)-1] (:-——‘4’2—-+J(tw~-—9’2——-1))
Y2

so—Yy - —to gt gL /) (I ——
VAR SR AR S n

)
- J( —— + V2x))}
s T
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5. Some Numerical Simulations

We present here results of some simulations, which illustrate numer-
ically the characteristics of the procedure developed in the previous
sections. In order to simulate a random variable Y , having a wear-out
distribution with parameters A,a and T , proceed as follows. First,
simulate a random variable U , having a uniform distribution on (0,1) .
Then, solve for Y the equation

exp {-A¥ - \*(¥-1)}} = U ) (5.1)

Finally, determine X = min (Y,A)

In the present study we restrict attention to the case of =2 .,

Accordingly,
—-% InU » 1f Uz;)\T
Y= (5.2)
1 .1.1_ - 1/2 -AT
T - 2)‘_+ iy ( % InU - A1) , 1f U<e
In the following examples we consider a system with A-l = 200 [hr] ,

A = 225 [hr] , T = 750 [hr] , ¢ = 2 and the prior probability that
{10} 1is p = .2 . For the simulation of the random variable
Xn » (n=1,2,...) we apply a value of L (t-tn_1)+ . The values of
Ehe posterior probabilities, P, o and those of the Bayes estimators,
T, » are computed adaptively after each stage. In Table 5.1 we present
the results of such a simulation runm.

Table 5.1. A Simulation Run with Parameters

A =1/200, ¢ = 1/1000, p = .2, T = 750

n Xn tn P, Ta

1 41.49 1 41. 0.288 742.71
2 156.56 1 198, 0.473 646.85
3 108.39 1 306. 0.631 514.63
4 225.00 0 531. 0.437 921.39
S 225.00 0 756. 0.309 | 1317.66
6 31.19 1 788. 0.385 |1237.91
7 23.03 1l 8i1. 0.446 | 1170.46
8 115,07 1 926. 0.610 | 1011.46
9 - 114.04 1 1040. 0.742 866,27
10 . 20.53 1 1060. 0.779 815.35
1 27.09 1l 1087. 0.820 758.42
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Ye see in*the above example that the first value of tn larger than
T is t - 1040 [hr] . This is greater than <t by 290 [hr] , which
i: a little over than 1 MIBF. The cofresponding value of P, is

P, = .742 ., The estimate of T 1is " 266.27 . We see also that if
we defer the decision until pn2.8 then t,-T= 337 [hr] and

e 758.42 . Thus, the second decision (stopping) time provided a
more accurate estimate of t . In Table 5.2 we present frequency dis-
tributions and the exact means and standard deviations of W: = t: -1
as obtained by M=100 independent simulation runs, for each one of the
prior parameters % = 1/500, 1/750 and 1/1000 . The decision time in
t&ese simulations is the first value 6f tn greater than ;n , 1.e.,
t - least n2l1, such that thTn (5.3)

Table 5.2. Frequence Distributions, Means and Standard
*
Deviations of w in M=100 Simulation Runs

Mid Point Frequencies
Interval 1/y=500 1/y=750 1/y=1000
~500 10 ) 0 0
-400 35 28 15
=300 17 37 22
-200 21 7. 19
-100 8 11 6
0 0 0 10
100 6 7 10
200 3 9
300 0 1
400 0 0
Mean -278.15 ~218.44 ~131,72
St. Dev. 167.44 201.88 . 239.82

We see in Table 5.2 that the decision time t: tends to yield too many early
decision points. If 1/y=1,000 [hr] the results are significantly

better than in the case of 1/y=500 or 750 [hr] .

The situation seems to be better in the case of the decision times

defined by

AER MR SRR L O SE S
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In Table 5.3 we present the frequency distributions of wh

%%
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t. = least n s.t. p_2.9
n n

obtained in independent simulation rums.

Table 5.3.

X =

Frequency Distributions, Means and Standard

*x
Deviations of W~ in M=100 Simulation Runs

t
n

Mid Point Frequencies

IntZivals 1/ ¥=500 1/y=750 1/y=1000

=300 15 2 2

-200 17 22 19

-100 17 12 13

0 10 16 10

100 4

200 4 7

300 8 7

400 2 3

500 12 17 6

600 13 25

700 2 4

Mean 65.60 152.85 202.13

St. Dev. 311.78 325.40 322.37

(5.4)

*%
- 'r >

*k
It seems that the Bayes decigion times tn based on the prior

distribution (3.5), with a proper choice of the y value (not
too small), provide good results in the problem of detecting a

shift to the wear-out phase.

AT T VR AT
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